

Usability Evaluation of a Home Telemedicine System

- Anders Bruun (bruun@cs.aau.dk)
- Jan Stage (jans@cs.aau.dk)
- ▶ Presented by:
 - Anders Bruun
 - University of Aalborg
 - Department of Computer Science
 - Selma Lagerlöfs Vej 300
 - DK-9220, Aalborg Oest

Introduction

- Motivation:
 - Functionality vs. Usability
 - Problem: Usability Evaluations are Expensive
- Purpose:
 - Cost effective usability evaluation of a telemedicine system

Comparison of two usability evaluation methods

- Method I: Traditional Usability Evaluation
- Method 2: Instant Data Analysis (IDA)

Case: The Home Telemedicine System

- Telemedicine system
 - Targeted user group: Elderly
 - Automatic transfer of data
- Secondary devices:
 - Blood pressure meter
 - Blood sugar meter
 - Scale
 - Interfaces: Bluetooth, Infrared and serial cable

Method I: Traditional Usability Evaluation (Video Based Analysis - VBA)

- Usability lab
 - Representative end-users
 - Test monitor
 - Data logger
- Procedure
 - Individual task completion
- Data collection
 - Video and audio recordings
 - Notes from data logger
- Data analysis
 - Video Based Analysis (VBA)

Task#	Task Description
I	Connect and install the HCS and secondary devices
2	Transfer data from the blood sugar meter to the HCS. The blood sugar meter is connected using a cable.
3	Measure the weight and transfer data from the scale to the HCS.
4	A new wireless blood sugar meter is used. Transfer the data from this to the HCS.
5	Clean the equipment.

Method 2: Instant Data Analysis (IDA)

- Usability lab
 - Representative end-users
 - Test monitor
 - Data logger
- Procedure
 - Individual task completion
- Data collection
 - Notes from data logger
 - ÷ Video and audio recordings
- Data analysis
 - Structured brainstorm session
 - ÷ Video Based Analysis

Results: VBA vs. IDA

Number of identified problems

	Method I: Traditional (video)	Method 2: IDA
Critical	13	16
Serious	13	13
Cosmetic	18	8

▶ Time requirements

	Method I:Traditional (video)	Method 2: IDA
Analysis	41.75 h	6 h
Writing and validating problem list	I8 h	4.5 h
Total	59.75 h	10.5 h

Conclusions

- Instant Data Analysis is efficient in identifying critical and serious usability problems (but not cosmetic problems)
- Instant Data Analysis requires 10.5 hours compared to 60 hours for the traditional approach

Thank you for listening! We always welcome collaboration with industry partners and other researchers

Any questions?

- Anders Bruun (bruun@cs.aau.dk)
- Jan Stage (jans@cs.aau.dk)
- Presented by:
 - Anders Bruun
 - University of Aalborg
 - Department of Computer Science
 - Selma Lagerlöfs Vej 300
 - DK-9220, Aalborg Oest

Results: Examples of Experienced Problems

- Information
 - Does not understand text "Detecting phoneline"
- User's mental model
 - Unclear how to connect Bluetooth scale
- Missing feedback
 - Idle screen upon completion of questions
- Visibility
 - Cannot find volume buttons

Results: VBA vs. IDA

Number of identified problems

Time requirements

	Traditional (video)	IDA
Analysis	41.75 h	6 h
Writing and validating problem list	18 h	4.5 h
Total	59.75 h	10.5 h

References

- Faulkner, L., 2003. Beyond the Five-User Assumption: Benefits of Increased Sample Sizes in Usability Testing. In *Behavior Research Methods, Instruments & Computers*, 35(3), pp. 379-383. Psychonomic Society, Notre Dame, IN.
- Kaufman, D. R., et al., 2003. Usability in the Real World: Assessing Medical Information Technologies in Patient's Homes. In *Journal of Biomedical Informatics*, Elsevier Science, San Diego, CA.
- Nielsen, J. and Landauer, T. K., 1993. A Mathematical Model of the Finding of Usability Problems. In *Proceedings of the INTERACT '93 and CHI '93 conference on Human factors in computing systems*. ACM, New York, NY.
- Spool, J. and Schroeder, W., 2001. Testing Web Sites: Five Users Is Nowhere Near Enough. In CHI '01 extended abstracts on Human factors in computing systems. ACM, New York, NY.

Related work

- ► Kaufman et al. (2003)
 - Usability evaluation of a similar home telemedicine system
 - Similar types of usability problems
 - "Unnecessarily complex tasks"
 - Feedback issues
 - Information issues

Data Analysis

- Video Based Analysis (VBA)
 - 3 evaluators (incl. data logger and technician)
 - Individual video analysis (incl. categorizations)
 - Merging of problem lists
- Instant Data Analysis (IDA)
 - 2 evaluators (test monitor, data logger), I facilitator
 - Brainstorm
 - Task review
 - Note review
 - Categorization of problems
- Merging of VBA and IDA problem lists

Five users?

- Nielsen & Landauer (1993)
 - Assumption 1: Identification of usability problems independent of wheter or not they have been found previously.
 - Assumption 2: Usability problems are independent of eachother.
- Spool & Schroeder (2001)
 - Nielsens model ok, but the variable L needs to be adjusted.
 - 5 users = 35 %
- Faulkner (2003)
 - 5 users: 55 % <= UP <= 99 %</p>
 - Large variations!
 - Most imprtantly: Select representative users!

Source: http://www.useit.com/alertbox/20000319.html **Retrieved:** Jan 17th 2010

Experienced problems III - Connection and installation

- Connection and installation difficult!
 - 32 of 51 problems (63 %)
 - Almost all critical (79 %) and serious (80 %) problems
- Mostly related to information and user's mental model
- Information
 - Does not understand text
- User's mental model
 - Does not know how prefix

			Task
User	I	2	
I	33:25	10:10	
2	33:44	09:34	Detekterer telefonlin
3	28:25	02:26	
4	18:43	02:43	
5	26:05	01:06	
Average	28:09	05:12	$Y \Leftrightarrow \Box$